Sirindhorn International Institute of Technology
Thammasat University at Rangsit
School of Information, Computer and Communication Technology

Practice Problems for the Final Examination

COURSE : ECS204 Basic Electrical Engineering Laboratory
INSTRUCTOR: Asst. Prof. Dr. Prapun Suksompong
PLACE : BKD 3502

Name		ID	
Time	\square group a: 9:30-10:30 AM	Bench\#	
	\square group b: 10:40-11:40 AM		
	\square group c: 1:30-2:30 PM		
	\square group d: 2:40-3:40 PM		

Instructions:

1. This document contains practice problems for the final examination.
2. Date of the actual exam: April 27, 2015.
3. Read these instructions and the questions carefully.
4. Closed book. Closed notes. No calculator.
5. You may use any equipment available on your workbench to solve your questions or verify your answers.
6. For this practice session, you do not need any TA signature.

However, for the actual exam, for the problems that ask for TA's signatures, lack of the signature(s) means no credit for the whole part. Request the TA to sign you answer again if you decide to change your answer later.
7. Allocate your time wisely. Some easy questions give many points.
8. When not explicitly stated/defined, all notations and definitions follow ones given in the lab manuals and slides.
9. Units are important.
10. When possible, record at least two decimal places from the DMM. Do not write 12 mA when you see 12.00 mA on the DMM's display.
11. On the actual exam, do not forget to write your first name and the last three digits of your ID on each page of your examination paper, starting from page 2.
12. For the actual exam,
a. the TAs will not help you debug your circuit.
b. arrive at least 10 minutes early
c. do not leave the exam room until the end of the allotted time.
13. Do not cheat. The use of communication devices including mobile phones is prohibited in the examination room.
14. Organize items on your desk/bench before you leave the exam room.
15. Do not panic.

Printed on: April 18, 2015

Sec 1		Sec 2	
5422780759	a	5422800680	d
5622780153	b	5622770659	c
5622780427	b	5622770733	d
5622780609	b	5622772093	d
5622781359	b	5622780237	c
5622781565	b	5622780260	c
5622790129	a	5622780310	d
5622790194	b	5622780344	c
5622790244	a	5622780526	d
5622790251	b	5622780799	c
5622790301	b	5622780856	d
5622790566	a	5622780898	c
5622791192	a	5622780906	c
5622791812	b	5622781003	c
5622791838	a	5622781227	c
5622791846	a	5622781615	c
5622792182	b	5622781748	d
5622792281	a	5622782019	d
5622792349	b	5622790582	c
5622792604	a	5622790723	d
5622792950	b	5622790731	d
5622793172	a	5622791424	d
5622793826	a	5622791549	c
5622795012	a	5622791580	d
5622795137	a	5622792067	c
5622795319	b	5622792315	C
5622795459	b	5622792331	c
5622795483	a	5622792455	
5622795681	b	5622792497	d
5622795723	b	5622792521	d
5622800100	a	5622792539	d
5622800118	a	5622793040	d
5622800472	a	5622793313	d
		5622793578	c
		5622793800	c
		5622794923	d

Basic Information

The following table might be useful for reading resistor code:

Black	Brown	Red	Orange	Yellow	Green	Blue	Violet	Grey	White
0	1	2	3	4	5	6	7	8	9

The pin details of op amp 741 are shown in Figure 1 below.

Figure 1

Reminders:

1. $\mathrm{V}_{\mathrm{DC}}=$ measured voltage value using the DMM in DC mode.
2. $\mathrm{V}_{\mathrm{AC}}=$ measured voltage value using the DMM in AC mode
3. $\mathrm{V}_{\mathrm{RMS}}=\sqrt{v^{2}(t)}=\sqrt{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v^{2}(t) d t}$ for periodic waveform $v(t)$ with period T
\qquad ID \qquad

Model number of your DMM: $_$RD700
Model number of your Oscilloscope: GOS-6103C

Problem 0

Display the calibration signal of the oscilloscope on both channel 1 and channel 2 of the oscilloscope. The ground levels of both channels should be in the middle of the screen.

No offset
 Problem 1

Use the function generator to generate a $3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 2 \mathrm{kHz}$ square waveform. Set the $\mathbf{D C}$ offset of the waveform to be 1 V . Display the waveform on channel 1 of the oscilloscope. Make sure that the scope is in DC mode.
Sketch the waveforms here. Indicate the ground level on your sketch as well.

Voltage/Division 1 V/DIV
Time/Division $\quad \underline{0.1 \mathrm{~ms} / D I V}$

Measure V_{DC} and V_{AC} of this waveform.
Theoretically, if we have true-rms DMM (such as RD701), we should get 1.500 V .
$V_{D C}=1.000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{AC}}=1.441 \mathrm{~V}$
Now, change the DC offset to 2 V .
Measure V_{DC} and V_{AC} of this waveform.
$V_{D C}=2.000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{AC}}=1.441 \mathrm{~V}$
Again, if we have true-rms

\qquad

Problem 2

Connect the circuit as shown in Figure 2.

Use $R_{1}=1 \mathrm{k} \Omega$
and $\mathrm{R}_{2}=2 \mathrm{k} \Omega$.
Measure the exact values of the resistance for R_{1} and R_{2}.

Record these values in the table here along with the corresponding color codes.

Figure 2

	Value	Color Code
R_{1}	$1.008 \mathrm{k} \Omega$	Brown Black Red
R_{2}	$1.967 \mathrm{k} \Omega$	Red Black Red

Set the function generator to generate a $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 1 \mathrm{kHz}$ sinusoidal waveform with $\mathbf{N O}$ DC offset.
a) Sketch the waveforms here. Make sure that you put appropriate labels ("Ch-1" or "Ch-2") on your sketch. Indicate the ground level on your sketch as well.

Note that there is only one space here for the voltage per division; so the setting should be the same for both channels.
Voltage/Division 0.5 V/DIV
Time/Division $0.2 \mathrm{~ms} /$ DIV

< GND
b) From the oscilloscope display, read the peak-to-peak voltage V_{1} across R_{1}, and the peak-to-peak voltage V_{2} across R_{2}.
$\mathrm{V}_{1}(\mathrm{p}-\mathrm{p})=0.674 \mathrm{~V}$
$\mathrm{V}_{2}(\mathrm{p}-\mathrm{p})=1.34 \mathrm{~V}$
c) Measure the rms current I_{1} through the resistor R_{1}.
$\mathrm{I}_{1}(\mathrm{rms})=0.21 \mathrm{~mA}$

\qquad
\qquad

Problem 3

Connect the circuit in the figure below. Channel 1 of the oscilloscope should display v_{i} and Channel 2 of the oscilloscope should display v_{o}.

$$
\frac{0-v_{i}}{R_{R}}+\frac{0-v_{0}}{R_{F}}=0
$$

a. Select

- the resistance values R_{F} and R_{R} (which can be $5-\mathrm{k} \Omega, 10-\mathrm{k} \Omega$, or $20-\mathrm{k} \Omega$)
- the signal shape, amplitude, and frequency of the signal from the function
generator If this is too low, then distortion in output will
- the values of V_{CC} from the power supply
- the settings on the oscilloscope panel
so that your oscilloscope screen matches the photo below.
$\mathrm{R}_{\mathrm{F}}=$
$\mathrm{R}_{\mathrm{R}}=\geqslant$-same-
$f=$ \qquad One cycle same amplitude.
is approx. Therefore, we must 4.5 divisions have
which is
$4.5 \times .2=.9 \mathrm{~ms}$
So, the frequency is $\frac{1}{0.9 \mathrm{~ms}} \approx 1.1 \mathrm{kHz}$
b. Repeat part (a) but now your screen should match the new photo below. Use this as your
\qquad Reading from the
screen, we see that the input and the output have the

$$
R_{F}=R_{R} .
$$

starting value.
$f=$
Here, be course the VOLT/DIV for CH_{2} is only 1 (instead of 2), but the traces look exactly
the same, we know that

$$
v_{0}=-\frac{1}{2} v_{i}
$$

$$
\text { So, we need } \frac{R_{F}}{R_{R}}=\frac{1}{2}
$$

$$
\begin{gathered}
\quad R_{R}=2 R_{F} \\
\text { Ex. } \quad 20 \mathrm{k} \Omega \\
10 \mathrm{k} \Omega \\
10 \mathrm{k} \Omega \\
\\
10 \mathrm{k} \Omega
\end{gathered}
$$

Problem 4

a) Use the function generator to generate a $1 \mathrm{~V}_{\mathrm{AC}} 2 \mathrm{kHz}$ sinusoidal waveform with NO DC offset. Display it on channel 1 of the oscilloscope. Make sure that the scope is in DC mode.
Sketch the waveform here. Indicate the ground level on your sketch as well.

Voltage/Division 0.5 V/DIV
Time/Division $\quad 0.1 \mathrm{~ms} /$ DIV

Record the exact rms value here: 1.003 V Record the exact frequency here: 2.0000 kHz Find the peak-to-peak value of this signal: $3.030 \mathrm{~V}_{\text {rms }}$

Theoretically, if we have true-rms DMM, with the $1 \mathrm{~V}_{\mathrm{rms}}$, we should have $2.828 \mathrm{~V}_{\mathrm{p} \text {-p }}$.

For the rest of this problem, DO NOT adjust anything on the function generator. This means keep its OPEN-circuit voltage at $1 \mathrm{~V}_{\mathrm{rms}}$.
b) Connect the function generator output (with $1 \mathrm{~V}_{\mathrm{rms}}$ OPEN-circuit voltage) across a 100Ω resistor. Measure the voltage (rms) across this resistor.

The exact resistance is 97.9Ω.
The rms voltage across the resistor is $0.667 \mathrm{~V}_{\text {rms }}$. (Hint: Not 1.) $\frac{100}{50+100} \times 1 \mathrm{~V}_{\text {rms }}$
Display the voltage across the resistor on channel 1 of the oscilloscope. Make sure that the scope is in DC mode. Sketch the waveforms here. Indicate the ground level on your sketch as well.
\qquad

Voltage/Division 0.5 V/DIV
Time/Division $\quad 0.1 \mathrm{~ms} /$ DIV

c) Change the resistor to 50Ω. (If you can't find a 50Ω resistor, you can construct one using two 100Ω resistors.) Measure the voltage (rms) across this resistor.

The exact resistance is 49.0Ω.
The rms voltage across the resistor is $0.500 \mathrm{~V}_{\mathrm{rms}}$. (Hint: Not 1.)
d) Connect the circuit as shown in the figure below:

Use $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$. The input $\mathrm{v}_{\text {in }}$ is again the 2 kHz sinusoidal waveform with $1 \mathrm{~V}_{\text {rms }}$ OPEN-circuit voltage from the function generator. Measure the rms voltage across R when R is 100Ω.

The exact resistance is 97.9Ω.
The rms voltage across the resistor is $1.000 \mathrm{~V}_{\text {rms }}$.
e) Change the resistor to 50Ω. Measure the voltage (rms) across this resistor.

The exact resistance is 49.0Ω.
The rms voltage across the resistor is $0.95 \mathrm{~V}_{\mathrm{rms}}$.
f) Why does the voltages across the resistor change when there is no op amp?

Without the op-amp, there is a voltage drop across the 50Ω inside the function generator because there is some current flowing through it (which is why we can use the voltage divider formula to calculate the output voltage).
However, when there is an op-amp, there is negligible current into the non-inverting terminal of the opamp . Therefore, there is no current flowing through the 50Ω inside the function generator. Without any current, there is no voltage drop across the 50Ω. So, 100% of the open-circuit voltage is seen at the non-inverting terminal of the op-amp.

Problem 5

a) Connect the circuit as shown in Figure 3. Adjust the function generator to generate a $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 2 \mathrm{kHz}$ sinusoidal waveform with NO DC offset. Use $\mathrm{R}=3.3 \mathrm{k} \Omega$.

Figure 3
The exact value of R is $3.243 \mathrm{k} \Omega$.

Display the voltage v_{in} across the function generator on channel 1 of the oscilloscope. Display the voltage $v_{\text {out }}$ across the resistor R on channel 2 of the oscilloscope.
Make sure that the scope is in DC mode. Sketch the waveforms here. Make sure that you put appropriate labels ("Ch-1" or "Ch-2") on your sketch. Indicate the ground level on your sketch as well.

Note that there is only one space here for the voltage per division; so the setting should be the same for both channels.

Voltage/Division 0.5 V/DIV
Time/Division $0.1 \mathrm{~ms} /$ DIV

b) Describe the relationship between $v_{\text {in }}$ and $v_{\text {out }}$.

Tout is the positive part of the $v_{\text {in }}$ that is shifted
c) Measure the peak-to-peak, V_{AC}, and DC (average) values of $\mathrm{v}_{\text {in }}$ and $\mathrm{v}_{\text {out }}$.

	$\mathrm{V}_{\text {peak-topeak }}$	$\mathrm{V}_{\text {AC }}$	V_{DC}
$\mathrm{V}_{\text {in }}$	2.00 V	0.671 V	small
$\mathrm{V}_{\text {out }}$	0.53 V	0.160 V	122.9 mV

